US009146952B1

a2z United States Patent (10) Patent No.: US 9,146,952 B1
Patel 45) Date of Patent: *Sep. 29, 2015
(54) SYSTEM AND METHOD FOR DISTRIBUTED 7,653,664 B2 1/2010 Chitre et al.
BACK-OFF IN A DATABASE-ORIENTED 7,774,219 B1* 8/2010 Meredithetal. 705/7.27
7,979,399 B2 7/2011 Barsness et al.
ENVIRONMENT 2002/0004843 Al* 1/2002 Anderssonetal. 709/238
. . 2002/0093954 Al* 7/2002 Weiletal.cccoeeenne 370/389
(71) Applicant: Amazon Technologies, Inc., Reno, NV 2005/0021567 Al 1/2005 Holenstein et al.
(as) 2008/0069138 Al* 3/2008 Acharyaetal. 370/468
2008/0109494 Al 5/2008 C}_litre et al.
(72) Inventor: Rajesh Shanker Patel, Bellevue, WA 2008/0235294 Al* 972008 Girkaretal. ..o 707/202
US) 2009/0064160 Al 3/2009 Larson et al.
(2009/0204570 Al 8/2009 Wong
. . 2009/0320029 Al* 12/2009 Kottomtharayil 718/102
(73) Assignee: Amazon Technologies, Inc., Reno, NV 2010/0191712 Al* 7/2010 Wolman etal. 707/704
(as) 2010/0332449 Al 12/2010 Holenstein et al.
2011/0167243 Al 7/2011 Yip et al.
(*) Notice: Subject. to any disclaimer,. the term of this * cited by examiner
patent is extended or adjusted under 35
U.S.C. 154(b) by 178 days. .
]))]] Primary Examiner — Cam-Linh Nguyen
This patent is subject to a terminal dis- (74) Attorney, Agent, or Firm —Robert C. Kowert;
claimer. Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.
(21) Appl. No.: 13/867,794
57 ABSTRACT
(22) Filed: Apr. 22,2013 Embodiments may include a system configured to, for each of
Related U.S. Application Data multip.le database partitions, generate a respective value of
commit latency dependent on the latency of one or more
(63) Continuation of application No. 13/074,985, filed on previous commit operations directed to that database parti-
Mar. 29, 2011, now Pat. No. 8,429,120. tion. The system may also be configured to, for a given work
item that includes a commit operation to be initiated on a
(51) Imt.ClL given database partition of said multiple database partitions,
GO6F 17/30 (2006.01) determine whether the value of the commit latency for the
(52) U.S.CL given database partition exceeds a configurable commit
CPC oo GOG6F 17/30377 (2013.01) latency threshold. The system may be configured to, in
(58) Field of Classification Search response to determining that the value of the commit latency
USPC ittt 707/607, 704 for the given database partition exceeds the commit latency
See application file for complete search history. threshold, postpone the given work item to reduce load on the
database partitions and perform the given work item after the
(56) References Cited postponement. If the commit latency does not exceed the

threshold, the work may be performed without the postpone-

U.S. PATENT DOCUMENTS ment.
6,728,719 Bl 4/2004 Ganesh et al.
7,293,163 B2 11/2007 Caprioli et al. 20 Claims, 7 Drawing Sheets
work hack-off
(non-batched work)

receive a request to perform a work item, the work item being directed
to a respective database partition
400

categorize the work item as being a particular work type:
02

]

identify the commit latency thrashold that comesponds to the
particular work type
404

current
‘commit latency of the respective database
partition exceeds the identified commit latency threshold
for the particular work typs?

no

| reduce database load by postponing the work item |
408

T
v

parform the work item
410

US 9,146,952 B1

Sheet 1 of 7

Sep. 29, 2015

U.S. Patent

} 9Ol
2l 90IAIBS couclm_sl.mwlgmlumul_
r————=—7 I
[0cl _ U0} T Wayshs jsoy |
_ Wa)sAs aseqejep _ _ = ononh yiom _ “
I ugll | Uzl Jojuow [ugol
| uonned _ Aougie| N o [Wwa)sAs
aseqele al 8l
_ qeiep _ UDLT S0uB)ISUl 30IAI8S “ 0o
I . [. I
_ : : _ :
_ _ _ .
[aort O -
_ 5T _ q91T wajss Jsoy m_ =
[uonied | @17 enenbuom | 3 m_
I aseqejep & 5] S
_ | Gzl T Jojuow <[| qool
_ fousrei oo | [* 5 [£ \ (shuomeu wayshs
— ke @ sl
_ GETH TOTT 9OUEISUI QIINISS = !
[uonnJed 3
I aseqeep r
_ BGIT walshs Jsoy a7 _ B}
I —
_ T | &7 enenbuom | _ J_Mﬂwm
| | vonped _ B2 T JOJUOW _ .
_ SSeqeiEp | | Aouayey JwWod "
I
b - _ BT S0UBJSUI 80IAISS [
I

U.S. Patent Sep. 29, 2015 Sheet 2 of 7 US 9,146,952 B1

(200

DATABASE N-MOST RECENT COMMIT MEDIAN COMMIT
PARTITION LATENCIES MEASURED (ms) LATENCY (ms)
118A 100, 150, 155, 300, 240, 100, 220 ... 155
1188 205, 150, 260, 120, 100, 115, 110 .. 120
118C 75,80, 75, 85, 100, 120, 105 ... 85
118N 100, 160, 155, 200, 240, 100, 170 ... 160
FIG. 2
(300
DATABASE N-MOST RECENT COMMIT MEAN COMMIT
PARTITION LATENCIES MEASURED (ms) LATENCY (ms)
118A 100, 150, 155, 300, 240, 100, 220 ... 181
1188 205, 150, 260, 120, 100, 115, 110.... 151
118C 75, 80, 75, 85, 100, 120, 105 .. 91
118N 100, 160, 155, 200, 240, 100, 170 ... 161
FIG. 3
500
WORK TYPE COMMIT LATENCY
(PRIORITY LEVEL) THRESHOLD (ms)
1 N/A
2 175
3 200
N | 600

U.S. Patent Sep. 29, 2015 Sheet 3 of 7 US 9,146,952 B1

work back-off
(non-batched work)

receive a request to perform a work item, the work item being directed
to a respective database partition
400

\4

categorize the work item as being a particular work type
402

v

identify the commit latency threshold that corresponds to the
particular work type
404

current
commit latency of the respective database
partition exceeds the identified commit latency threshold
for the particular work type?
406

reduce database load by postponing the work item
408

perform the work item
410

(end)
FIG. 4

U.S. Patent Sep. 29, 2015 Sheet 4 of 7 US 9,146,952 B1

work back-off
(outhound batch work)

categorize a batch of work items to be performed as being work
items of a particular work type
600

v

identify the commit latency threshold that corresponds to the
particular work type
602

!

majority of
atabase partitions have commit latencies that are
arger than the identified commit latency threshold?
604

yes

\ 4
postpone processing of the entire
batch to reduce load on the
database
606

designate for exclusion, the database partitions having commit
latencies exceeding the identified threshold
608

\ 4

perform work items from the batch without using the database
partitions designated for exclusion
610

Y

C end)

FIG. 6A

U.S. Patent Sep. 29, 2015 Sheet 5 of 7 US 9,146,952 B1

work back-off
(inbound batch work)

categorize a batch of work items to be performed as being work
items of a particular work type
650

v

identify the commit latency threshold that corresponds to the
particular work type
652

do any database
partitions have commit latencies that are larger
than the identified commit latency threshold?
654

yes

A\ 4
postpone processing of the entire
batch to reduce load on the
database
656

perform work items from the batch
658

A\ 4

C end)

FIG. 6B

US 9,146,952 B1

Sheet 6 of 7

Sep. 29, 2015

U.S. Patent

----"-"-""-""""="=""="""—-—/ "~ = =~

T1Z 8018s JusLAed pajusLo-oSEqelep |

4

712a

lr=—=——7
I Oct I UGTT wajshs 150y
| | Weishs aseqejep

' I Uy} | 8nanb yiom
_ | Ugry Uz |} JojuowW
Ll uoned “ Aouaye| oo
||| e U977 90uesu
11 | 90InIBS JuawAed
Il : I
I 1 .
I 1 — TOTT washs 150 b=
X BT _ TaTT wajshs soy g
L] uonied _ | TviT anenb yom 5
|| | eseqeep T} Jojuoul s
I Aousie| w0 S
[— | 0} S0UE}SUI 3
Il iy 80IM9S JuswAed
Ll uoniJed
|| | eseqmep
I 1 I 2917 washs 1s0y
_ “ W I BFL} ananb yiom y

uoned Bz} Jojuow
_ “ aseqeiep | | Kouaje| Juwod
_ _ 891/ souesul
| T T I 801098 JuswAed
e e e e e e]
TZ1Z 90BUS1UI S2IAISS JUSIO [BUISIXE
307 waishs
10ss3204d JuswAed

— — — — — — — - payment service interface

L°9H

I

I

(s) I

I

[

oI o ||
voL lel— siopio
Walshs | ey [enod | Jewomsm

Buipuey 90JaWW00-8 | |

lapio |

I

007 swa)sAs Jueyassw |

US 9,146,952 B1

Sheet 7 of 7

Sep. 29, 2015

U.S. Patent

088 0/8
(s)Aerdsip | | preoghoy

098
30IASp
|01U00
10SIND

Y S

8 "9ld

G868
ylomsu

g1
(sjuonnsed
aseqejep

vol
901 EalE]
Jaouejeq peo| 90IMBS

\ 27| Jojuow
4 &Ll oUus)e| NWW0d
ananb yJom
5 78 | B017 souessul sowuss |
(s)eo1rep Indinopndu o — —
yomsu 258 B|ep 228 suononisul weiboid
H 028 Mowsuw
0¢8
soelsiul O/
upig " q018 e018
J0ss8004d Josssooud Josssooud

08 Wa1sAs Jaindwod

US 9,146,952 B1

1
SYSTEM AND METHOD FOR DISTRIBUTED
BACK-OFF IN A DATABASE-ORIENTED
ENVIRONMENT

This application is a continuation of U.S. application Ser.
No. 13/074,985, filed Mar. 29, 2011, now U.S. Pat. No. 8,429,
120, which is incorporated by reference herein in its entirety.

BACKGROUND

In database-oriented services, fulfilling service requests
may include performing one or more calls to databases stor-
ing information related to the service. In these types of ser-
vices, database performance may influence the availability
and throughput of the overall service’s ability to process
requests. If databases are healthy, the service will likely
remain available with sufficient throughput. However, if a
database is overloaded with too many concurrent database
operations, database performance and throughput may
decline due to reduced operational health and efficiency. One
approach to promote the performance of database-oriented
services is to size the database capacity above the require-
ments of the service. However, even in these cases, the service
can receive an uncharacteristically high quantity of incoming
requests. Moreover, database capacity may temporarily
decrease due to failures within the database hardware or
software. Accordingly, even in cases where database capacity
is originally sized above the requirements of the service, a
database can become over-loaded, ultimately creating a back-
log in the requests to be processed by the relying service and
increasing the risk of database failure and service outage.
Even in cases where a complete service outage does not
occur, overloaded databases may reduce efficiency and
throughput of relying services.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a block diagram of an example system
configuration including a database-oriented service and mul-
tiple clients of such service, according to some embodiments.

FIG. 2 illustrates an example table that may be maintained
by host systems to track median commit latency for each of
multiple database partitions, according to some embodi-
ments.

FIG. 3 illustrates an example table that may be maintained
by host systems to track average commit latency for each of
multiple database partitions, according to some embodi-
ments.

FIG. 4 illustrates a flowchart of an example method for
backing-off non-batched work items, according to some
embodiments.

FIG. 5 illustrates a table that maps categories of work (e.g.,
work types or priorities) to commit latency thresholds,
according to some embodiments.

FIGS. 6A-6B illustrate flowcharts of example methods for
backing-off batched work items, according to some embodi-
ments.

FIG. 7 illustrates a block diagram of an example system
configuration including a database-oriented payment service,
according to some embodiments.

FIG. 8 illustrates one example of a computer system suit-
able for implementing various elements of the system and
method for distributed back-off in a database-oriented envi-
ronment, according to some embodiments.

While the system and method for distributed back-offin a
database-oriented environment is described herein by way of
example for several embodiments and illustrative drawings,

w

10

25

35

40

45

60

2

those skilled in the art will recognize that the system and
method for distributed back-off in a database-oriented envi-
ronment is not limited to the embodiments or drawings
described. It should be understood, that the drawings and
detailed description thereto are not intended to limit the sys-
tem and method for distributed back-off in a database-ori-
ented environment to the particular form disclosed, but on the
contrary, the intention is to cover all modifications, equiva-
lents and alternatives falling within the spirit and scope of the
system and method for distributed back-oft in a database-
oriented environment as defined by the appended claims. The
headings used herein are for organizational purposes only and
are not meant to be used to limit the scope of the description
or the claims. As used throughout this application, the word
“may” is used in a permissive sense (i.e., meaning having the
potential to), rather than the mandatory sense (i.e., meaning
must). Similarly, the words “include,” “including,” and
“includes” mean including, but not limited to.

DETAILED DESCRIPTION OF EMBODIMENTS

Various embodiments of a system and method for distrib-
uted back-off in a database-oriented environment are
described. FIG. 1 illustrates a block diagram of an example
system configuration including a database-oriented service
and multiple clients of such service, according to some
embodiments. In the illustrated embodiment, a database-ori-
ented service 122 may be configured to service requests from
one or more clients systems, such as client systems 100a-7. In
various embodiments, database-oriented service 122 may be
configured as a service adhering to the general principles of
service oriented architecture (SOA). The database-oriented
service may be configured to perform a variety of functions,
such as managing payment processing in a commerce envi-
ronment, which is described in more detail with respect to
later Figures.

In FIG. 1, a given client system may issue or submit a
request to service interface 104 over one or more electronic
networks configured to communicate information or data.
One example of such a network is described below with
respect to network 885 of FIG. 8. In various embodiments,
service interface 104 may provide a common address (e.g., an
Internet Protocol (IP) address) to which client requests may
be directed. Requests received at the service interface may be
forwarded to a load balancer 106, which may be configured to
send a given request to one of the illustrated host systems (or
“hosts™) in accordance with a load balancing protocol. In
various embodiments, any type of load balancing protocol
may be utilized, whether such protocol is presently known or
developed in the future. Generally, the load balancing tech-
nique employed by the load balancer seeks to evenly (or
nearly evenly) distribute the requests among host systems
116a-116n.

Each host system may include a service instance, illus-
trated as service instances 110a-110%. The service instance
110a may be configured to process client requests sent to the
service. For instance, requests may specify one or more work
items to be performed and the service instances may be con-
figured to perform such work items. For instance, if database-
oriented service 122 were a payment service, the service
instances may obtain an authorization (or reservation) for a
specific amount of funds to be debited from a customer
account. In another example, the service instance may obtain
settlement of funds upon (or near) the conclusion of a trans-
action with a customer. In the illustrated database-oriented
service, performing work items may also include issuing (or
initiating) one or more commit operations to database parti-

US 9,146,952 B1

3

tions 118a-118# of database system 120. Database partitions
may be different databases, different portions (e.g., tables or
groups oftables) ofthe same database, or different portions of
different databases. In some embodiments, database parti-
tions may be horizontal partitions or “shards.”

In one example, the database oriented service may be a
payment service, and database partitions 118¢-118% may
store the state of multiple transactions processed by the pay-
ment service. For instance, throughout the course of a trans-
action processed by such payment service, the transaction’s
state may transition from an initiated state (e.g., recorded, but
prior to fund authorization/reservation), an authorized state
(e.g., funds have been reserved), a settled state (e.g., process-
ing of the transaction is closed and funds have been debited),
or even a canceled state (e.g., the transaction has been can-
celed and any reserved funds have been released). In various
embodiments, the illustrated service instances may issue
commit operations to update the state of transactions within
the database partitions. In other cases, the service instances
may issue commit operations to perform other types of work
items, which need not be related to a financial transaction or
purchase.

Also illustrated, each host system 116a-1167 includes a
respective commit latency monitor 112¢-112xz. In some
embodiments, a host system’s service instance and commit
latency monitor may act in conjunction to perform the data-
base back-off functionality described herein, as described in
more detail below. In various embodiments, a host system’s
commit latency monitor may determine and/or record the
latency of any database commit operation issued by the host’s
service instance. Generally, the commit latency may be a
measure of the time between when a commit latency is initi-
ated and when that commit latency is completed. Some varia-
tion or deviation from this general measure may exist due to
network or communication latencies between the hosts and
the database partitions and/or due to the specific measure-
ment technique employed. In various embodiments, the com-
mit latency monitor of ahost may utilize timestamps of opera-
tions in order to determine the latency of a commit operation.
For example, the commit latency monitor may determine the
temporal difference between the timestamp of an initiate
operation to initiate a commit operation on a particular data-
base partition and a timestamp of a database partition
response indicating that commit operation has been com-
pleted.

Each commit latency monitor may use the measured laten-
cies as an indicator of database load. Generally, higher com-
mit latencies on a database partition may be indicative of
higher load on that database partition. Knowledge of the
latencies may be utilized to implement the distributed back-
off feature described herein. For instance, when the measured
commit latencies of a particular database partition measured
by a commit latency monitor are high, the respective service
instance on the same host may back-oft (e.g., postpone) com-
mit operations sent to that partition in order to allow that
partition to recover from its current state of high workload. In
this way, commit latency may be utilized to enable the data-
base partitions to remain healthy instead of increasing the
load on an already loaded database partition, thereby decreas-
ing the risk of total database partition failure.

In various embodiments, the commit latency monitors may
generate values of commit latency on a per-host, per-partition
basis. FIGS. 2 and 3 illustrate example commit latency values
generated by a commit latency monitor. As described with
respect to subsequent Figures, these measurements may be
utilized to determine whether a given work item is to be
backed-off in (e.g., postponed) in certain circumstances. In

25

40

45

60

4

various embodiments, table 200 may be an example of one
type of information generated and maintained by the commit
latency monitor of each host system. As illustrated by the
rows of table 200, a given commit latency monitor may record
the commit latencies for the n-most recent commit operations
performed by the host. The quantity of most recent commit
latencies retained may be configurable in various embodi-
ments. In various embodiments, the commit latency monitor
may perform a statistical analysis to determine a single
latency value based on the n-most latency values. As illus-
trated in table 200, this may include the commit latency
monitor generating the median of that sample for each data-
base partition. In other cases, as illustrated in table 300 of
FIG. 3, the commit latency monitor may generate the median
of each database partition’s sample of n-most recent commit
latencies. In various embodiments, either the mean or the
median latency values may be utilized. However, in some
cases, use of the median latency values may provide results
that are less susceptible to one (or a few) large values skewing
the latency value of the entire sample, as may be the case for
statistical averages (or “means”).

Returning to FIG. 1, the illustrated commit latency moni-
tors may use the median commit latency values (or in some
cases the mean latency values) generated according to the
techniques described above in order to determine whether
work items are to be backed-off (e.g., postponed) at least
temporarily. In various embodiments, the work items may
include work items specified by client requests and/or work
items that are queued within work queues 114a-114%. Various
techniques by which work items may be backed off are
described in more detail below with respect to FIGS. 4 and 6.
Generally, before performing a work item directed to a par-
ticular database partition, a host’s service instance may query
the commit latency monitor to determine whether the median
commit latency is above a configurable threshold. If the
median commit latency is above that threshold, the service
instance may back-off (e.g., postpone) the work item at least
temporarily in order to reduce the load on the database parti-
tions. If the median commit latency is below the threshold, the
service instance may perform the work item (including any
necessary database operation) without a postponement. Also
described in more detail below, different work items may be
categorized into different categories associated with different
latency thresholds. In this way, for a given database load,
some types of work (e.g., lower priority work) may be
backed-off at least temporarily while other types of work
(e.g., higher priority work) may be performed without a post-
ponement. In some configurations, work items of certain
categories (e.g., the highest priority work) may intentionally
not be postponed based on commit latency under any circum-
stances.

Example Methods for Distributed Back-Oft Based on Com-
mit Latency

Embodiments may perform various methods to implement
the distributed back-off functionality described herein. FI1G. 4
illustrates one example of such a method for non-batched
worked items. Examples of non-batched work items include
work items that are requested through service interface 104
but not queued in work queues 114q-z. In various embodi-
ments, the method of FIG. 4 may be performed by a host
system upon receipt of a work request (e.g., a request for-
warded to that host by load balancer 106).

As illustrated at block 400, the method may include receiv-
ing a request to perform a work item (e.g., a request received
at a host system from the load balancer), which may in some
case be referred to as an online request. In various embodi-
ments, the requested work item may be directed to a particular

US 9,146,952 B1

5

database partition. For instance, different database partitions
may store different datasets and the requested work item may
be directed to a dataset of a particular database partition.

As illustrated at block 402, the method may include cat-
egorizing the requested work item as being a particular work
type. For instance, work types may correspond to different
task priorities. For example, within the context of a payment
service, requests to authorize a transaction (e.g., reserve
funds for a customer purchase) may belong to a higher prior-
ity category than a request to settle a transaction. For instance,
shipment of an item purchased with funds from the transac-
tion may be dependent on a successful authorization of funds.
As shipment of an item on time may have a greater customer
impact than the settlement of funds, the authorization may be
designated as a higher priority type of work. Note that this is
only one example of how work may be categorized in various
embodiments. In general, any categorization that allows for
multiple different types of work having different priorities
may be utilized.

As illustrated at 404, the method may include identifying
the commit latency threshold that corresponds to the particu-
lar work type. In various embodiments, this may include
evaluating a table or other information similar to that of table
500 of FIG. 5. As illustrated in table 500, difterent work types
(or priority levels of work) are mapped to different commit
latency thresholds. In the illustrated example, the highest
level work priority is not assigned a threshold because in
various embodiments such work is not subject to being
backed-off (e.g., postponed). The remaining work categories
corresponding to priorities 2-» each have a corresponding
commit latency threshold. Returning to FIG. 4, the method
may include using the information of table 500 to determine
the commit latency threshold that is to be used in the evalu-
ation performed at block 406, as described below.

As illustrated at block 406, the method may include deter-
mining whether the current commit latency of the respective
database partition exceeds the identified commit latency
threshold for the particular work type of the work item
requested. The current commit latency may include the most
recent median (or mean) commit latency, such as that
described above with respect to FIG. 2 (or FIG. 3 for mean
commit latency). In various embodiments, these tables may
be periodically or aperiodically updated by the host’s commit
latency monitor. As illustrated by the positive output of block
406, if the current commit latency of the respective database
partition exceeds the identified commit latency threshold for
the particular work type, the method may include postponing
the work item at least temporarily in order to reduce the work
load on the respective database partition (408). By backing-
off work in this manner, the method may enable a database to
recover from a high workload episode instead of overloading
the database with additional work. As illustrated by the nega-
tive output of block 406, if the current commit latency of the
respective database partition does not exceed the identified
commit latency threshold for the particular work type, the
work item is not postponed and processing proceeds to block
410. At block 410, the method includes performing the work
item, which may include performing at least one commit
operation on the respective database partition.

FIG. 6A illustrates one example of such a method for
batched worked items. Examples of batched work items
include work items queued in work queues 114a-». In some
cases, work items on a host’s queue may be scheduled to be
performed by the host periodically or aperiodically. In vari-
ous embodiments, the method of FIG. 6 A may be performed
by a host system just prior to the scheduled time at which a
batch of work items is to be processed. For instance, a batch

10

15

20

25

30

35

40

45

50

55

60

65

6

of' work items may be scheduled to be performed every hour,
and the illustrated method may be performed prior to that
time. One example of this type of batch work includes the
sending of outbound responses from the database-oriented
service (e.g., to a payment processor system). Unlike inbound
batch work (e.g., receiving responses from payment proces-
sor systems) in some embodiments, the nature of outbound
work may enable hosts of the database-oriented service to
directly control the specific database partitions that will par-
ticipate in the outbound work (e.g., by virtue of which infor-
mation is being sent and on what database partitions such
information resides). While the service hosts may not directly
control which partitions will be involved in the processing of
inbound work (e.g., as this depends on upon what information
is received from, e.g., a payment processor), it is worthwhile
to note that the specific outbound work performed may influ-
ence the inbound work that returns to the database oriented
service. For instance, if messages associated with a subset of
the database partitions are sent out to a payment processor,
any responses sent back in response will also pertain to that
same subset of database partitions (in many configurations).
In this way, limiting outbound batch work to certain partitions
(see e.g., items 608-610 described below) may help throttle
inbound batch work as well.

As illustrated at block 600, the method may include cat-
egorizing a batch of work items to be performed as being
work items of a particular work type. For instance, the batch
of work items may be a type of work associated with one of
the priority levels illustrated in FIG. 5. As illustrated at block
602, the method may include identifying the commit latency
threshold that corresponds to the particular work type of the
batch. For instance, the method may include evaluating table
500 to determine the commit latency threshold that corre-
sponds to the work type of the batch. At block 604, the method
may include determining whether a majority of database par-
titions have commit latencies that are larger than the identi-
fied commit latency threshold. As illustrated by the positive
output of block 604, if it is determined that a majority of
database partitions have commit latencies that are larger than
the identified commit latency threshold, then the method may
include postponing processing of the entire batch or work
items in order to reduce the load on the database (606). For
instance, if a majority of the database partitions have commit
latencies above the threshold, the database partitions may be
heavily loaded and it may be more advantageous to allow the
database to “catch up” in processing work as opposed to
tasking the database partitions with more work (and possibly
risking total database failure).

As illustrated by the negative output of block 604, the
method may include designating for exclusion, the database
partitions having commit latencies exceeding the identified
threshold (608). For instance, if less than a majority of the
database partitions are overloaded (as indicated by commit
latency), it may be worthwhile to continue processing at least
some of the batched work items while selectively excluding
the already-loaded database partitions. At block 610, the
method may include performing at least some of the work
items from the batch without using the database partitions
that were designated for exclusion. In various embodiments,
if a work item of the batch is directed to a database partition
marked for exclusion, the method may skip this item and
leave it on the batch to be processed at a later time.

FIG. 6B illustrates another example of a method for
batched worked items. One example of the type of batch work
processed in FIG. 6B includes the receipt of inbound
responses from a payment processor system (or other external
client). Unlike outbound batch work (e.g., sending messages

US 9,146,952 B1

7

to payment processor systems) in some embodiments, the
nature of inbound work may not enable hosts of the database-
oriented service to directly control the specific database par-
titions that will participate in the inbound work (e.g., since the
requests or messages received by the database-oriented ser-
vice is largely dictated by what is sent by the payment pro-
cessor systems or other clients). However, as described
above, while the service hosts may not directly control which
partitions will be involved in the processing of inbound work
(e.g., as this depends on upon what information is received
from, e.g., a payment processor), it is worthwhile to note that
the specific outbound work performed may influence the
inbound work that arrives at the database oriented service. For
instance, if messages associated with a subset of the database
partitions are sent out to a payment processor, any responses
sent back in response will also pertain to that same subset of
database partitions (in many configurations). In this way,
limiting outbound batch work to certain partitions (see e.g.,
items 608-610 described above) may help throttle inbound
batch work as well.

As illustrated at block 650, the method may include cat-
egorizing a batch of work items to be performed as being
work items of a particular work type. For instance, the batch
of work items may be a type of work (e.g., inbound batch
work items) associated with one of the priority levels illus-
trated in FIG. 5. As illustrated at block 652, the method may
include identifying the commit latency threshold that corre-
sponds to the particular work type of the batch. For instance,
the method may include evaluating table 500 to determine the
commit latency threshold corresponding to the work type of
the batch. At block 654, the method may include determining
whether any of the database partitions have commit latencies
that are larger than the identified commit latency threshold.
For example, as inbound batch work items may span multiple
different database partitions, in some cases it may not be
worthwhile or efficient to perform only some of these work
items. For instance, if only some of such work items are
performed on some partitions, resources may have to be
expended on the increased complexity of tracking the work
items that have yet to be performed. Accordingly, as illus-
trated by the positive output of block 654, if it is determined
that any of the database partitions have commit latencies that
are larger than the identified commit latency threshold, then
the method may include postponing processing of the entire
batch or work items in order to reduce the load on the database
(656). As illustrated by the negative output of block 654, the
method may include performing the work items from the
batch without the postponement of block 656.

Note that in the embodiments described herein, when a
work item or batch of items is postponed to reduce database
load, the work item(s) may be evaluated again by the tech-
niques described herein in order to determine whether the
work item should be postponed (again) or performed by the
service. In other words, in some cases, work item(s) may be
evaluated and postponed multiple times before ultimately
being performed. In one example, queued work items may be
postponed by placing the items back on the queue (or simply
leaving them on the queue) to be re-evaluated at some later
time.

Payment Service Example

In various embodiments, the techniques described herein
may be implemented as part of a database-oriented payment
service configured to process requests from internal clients
and external clients. An example of such a service is illus-
trated in FIG. 7. Note that in FIG. 7, the elements being
like-numbered with elements of FIG. 1 may be assumed to be
similar to those elements of FIG. 1. In the illustrated embodi-

20

30

35

40

45

60

8

ment, the database-oriented payment service is illustrated as
database oriented payment service 714, which may be a ser-
vice offered by a merchant, such as a merchant that owns
and/or controls merchant systems 700.

In various embodiments, the merchant may operate an
electronic commerce (“e-commerce”) portal 702 on one or
more computer systems. For instance, in some embodiments,
a merchant may operate one or more network-accessible
servers that implement an electronic commerce portal where
customers may browse a catalog of product detail pages. Such
aportal may enable the customers to select one or more items
for purchase as part of a customer order submitted to the
merchant. In various embodiments, the merchant may receive
orders for one or more items through other channels.

In various embodiments, when a customer makes a pur-
chase through e-commerce portal 702, the e-commerce portal
may send transaction information to order handling system
704. For a given customer order, this transaction information
may specify the quantity of funds needed, the payment instru-
ment to be used (e.g., a credit card, debit card, or gift card) and
any relevant information needed to charge or debit the funds
from the account associated with the payment instrument
(e.g., the instrument holder’s name, the instrument’s expira-
tion date, a card security code (e.g., a CVV code), etc.). In
various embodiments, some or all of this information may be
included within a transaction initiation request sent by order
handling system 704 to payment service interface 712a over
one or more electronic network(s) 706. In various embodi-
ments, this type of request may be referred to as an internal
request since the request originates from one of the mer-
chant’s systems. In some embodiments, the order handling
system may designate one transaction as payment for an
entire order. In other cases, order handling system may des-
ignate multiple transactions as collectively representing pay-
ment for an entire order. In one example, the merchant may
fulfill orders through a network of materials handling facili-
ties. In this example, the order handling system may split an
order into multiple transactions based on how the order is
actually processed in the merchant’s network of facilities. In
one non-limiting example, for an order including multiple
items, shipments including different subsets of those items
may be prepared at different facilities within the merchant’s
network. In this example, the order handling system may
structure the transactions for the order such that each ship-
ment is handled by a separate transaction. In other cases, all
items of an order may be handled by a single transaction
irrespective of where the shipments for that order are pre-
pared.

When payment service interface 7124 receives a transac-
tion initiation request from order handling system 704, the
interface may forward the request to load balancer 106, which
may then distribute the request to a particular host system
according to techniques similar to those described above with
respect to FIG. 1. In the illustrated example, it will be
assumed that the request is sent to host system 116a. As
illustrated, host system 116a¢ may include a payment service
instance 716a. In response to the transaction initiation
request, the payment service instance may create a record for
the transaction within one of the database partitions. In vari-
ous embodiments, this record creation may be designated as
being a very high priority task (e.g., priority level 1 of table
500) and thus exempt from being subject to back-off. For
instance, since the creation of a transaction record within
database system 120 is performed prior to obtaining a fund
reservation for a customer purchase, the system may priori-
tize this type of database operation as the highest priority in
order to avoid negatively impacting the customer experience.

US 9,146,952 B1

9

For instance, ordered items may not be shipped until funds
have been reserved as payment for such items; generally the
faster funds are reserved the faster the item may be shipped to
the customer in various embodiments.

Also in response to a transaction initiation request, pay-
ment service instance 716a may send a request to authorize
(e.g., reserve) funds for the customer purchase to payment
processor system 708. Payment processor system 708 may
communicate with a financial institution (e.g., a bank or credit
card company) to secure the funds for the purchase. In
response to successfully reserving the funds, payment pro-
cessor system 708 may notify the merchant that the reserva-
tion of funds was successful by sending a notification via
network 710 and a second interface, illustrated as external
client service interface 7125. In response, payment service
instance 716a may update the state of the transaction within
one of database partitions 118. In various embodiments, this
state update may also be designated as being a very high
priority task (e.g., priority level 1 of table 500) and thus
exempt from being subject to back-off according to various
embodiments (e.g., in order to avoid delaying shipment and
avoid negatively impacting the customer experience).

In various embodiments, there may also be a number of
service requests specifying work items that are subject to
being backed-off according to the techniques described
herein. Examples of such work items may include but are not
limited to receiving and/or queuing requests to begin trans-
action settlement with the payment processor system 708,
actually sending the settlement request to the payment pro-
cessor system 708, and/or receiving response to the settle-
ment request from payment processor system 708. Each of
these types of work items is described in more detail below.

In various embodiments, internal systems (e.g., order han-
dling system 704 or another one of the merchant’s systems)
may submit requests to begin transaction settlement. For
instance, in one embodiment, order handling system (or
another merchant system) may determine that a customer
order corresponding to a transaction has been shipped. In
some configurations, this shipment may trigger settlement of
the transaction. Accordingly, in response to determining that
the customer order has shipped, order handling system 704
may send a request to settle the transaction to the payment
service and such request may be routed to one of the host
systems (e.g., host system 116a). In various embodiments,
the payment service instance 716a may utilize any of the
techniques described herein to determine whether the work
item of receiving and/or queuing the request should be
backed-off (e.g., postponed). If no postponement is in order,
the payment service instance may proceed to accept the work
item and queue such item in work queue 114a. However, in
cases where the payment service instance 716a determines
that the receipt and/or queuing of the work item is to be
backed-off, the payment service instance may send to order
handling system 704 (or whichever system originally sent the
request) a message that indicates the request was not recorded
and/or that the request should be retried at a later time. In
various embodiments, these postponement techniques may
enable the database system 120 to recover from any transient
period of database load and thus decrease the probability of a
database failure. Generally, this type of work item (e.g., the
receipt/queuing of a settlement request to the payment pro-
cessor) may be categorized as having a higher priority (see
e.g., table 500) than the work items of actually sending the
settlement request to the payment processor system 708, and/
or receiving a response to the settlement request from pay-
ment processor system 708.

25

40

45

55

10

In cases where the settlement request work item is queued
within the host system, the host system may at some later
point determine whether to perform the work item of sending
the settlement request to payment processor system 708. For
instance, since the work item may be queued on work queue
114a, the payment service instance 716a may perform a
method similar to that of FIG. 6A to determine whether the
work item of sending the settlement request to the payment
processor should be backed-off (e.g., postponed). If no post-
ponement is in order, the payment service instance may pro-
ceed to send the settlement request to the payment processor
system. In various embodiments the settlement request may
specify the actual amount that is to be charged or debited to
the customer’s account, which may in some cases be less than
the amount that was originally authorized. In various embodi-
ments, in cases where the payment service instance 716a
determines that the work item of sending the settlement
request is to be backed-off (e.g., postponed), the payment
service may leave the work item on work queue 1144 to be
processed at a later time. In various embodiments, these post-
ponement techniques may enable the database system 120 to
recover from any transient period of database load and thus
decrease the probability of a database failure. Generally, this
type of work item (e.g. the work item of actually sending the
settlement request to the payment processor system 708) may
be categorized as having a higher priority (see e.g., table 500)
than the work item of receiving a response to the settlement
request from payment processor system 708 (described
below).

In cases where the settlement request is sent to the payment
processor system, the host system may at some later point
receive a response from payment processor system 708 indi-
cating success or failure of the settlement. In various embodi-
ments, the payment service instance 7164 may utilize any of
the techniques described herein to determine whether the
work item of receiving and/or queuing the notification of
settlement success/failure should be backed-off (e.g., post-
poned). If no postponement is in order, the payment service
instance may proceed to accept the work item and queue such
item in work queue 114a. However, in cases where the pay-
ment service instance 716a determines that the receipt and/or
queuing of the settlement response is to be backed-off, the
payment service instance may send to order handling system
704 (or whichever system originally sent the request) a mes-
sage that indicates the settlement response was not recorded
and/or that the settlement response should be resent at a later
time. In cases where the settlement response is accepted and
queued on work queue 114a, the payment service may again
evaluate whether to back-off the work item (e.g., according to
methods of FIGS. 6A-6B) using techniques similar those
described above for batched work items. In cases where the
work item is to be performed, the service instance may update
the transaction state in a respective database partition to indi-
cate that transaction settlement for the customer’s order has
been completed.

Opportunistically Performing Extra Work Based on Commit
Latency

In various embodiments described above, work items may
be postponed based on commit latency of database partitions.
In some cases, similar techniques may be utilized to oppor-
tunistically perform extra work when the health of the data-
base system affords such flexibility. For instance, as
described above, each host system may be configured to
perform batches of work, such as batches removed from work
queues 114a-114n. In various embodiments, this batched
processing may adhere to some form of a schedule, either
absolute (e.g., every hour on the hour), relative (e.g., each one

US 9,146,952 B1

11

our period since the last batched processing was performed),
or a similar schedule. In some embodiments, after a host’s
service instance has completed the processing of a scheduled
batch of work items, the service instance may check the
current median (or mean) commit latency values (e.g., as
specified by tables 200 or 300, which may be maintained on
each host) of the multiple database partitions. If the commit
latency values are below a configurable “extra work” thresh-
old, the service instance on the host may actually perform
additional work items from the work queue that were not
expected to be performed until a scheduled time in the future.
In other words, if the service instance determines that the
commit latencies values indicate the database partitions are
healthy, the service instances may utilize extra database
capacity to perform extra work, which may also reduce the
risk of straining the database partitions in the immediate
future.

Example Computer System

Various embodiments of the system and method for dis-
tributed back-off in a database-oriented environment, as
described herein, may be executed on one or more computer
systems, which may interact with various other devices. Note
that any component, action, or functionality described above
with respect to FIGS. 1-7 may be implemented on one or
more computers configured as computer system 800 of FIG.
8, according to various embodiments. For instance, in one
embodiment, acomputer similar to computer system 800 may
be utilized to implement any of host systems 1164 described
above. In the illustrated embodiment, computer system 800
includes one or more processors 810 coupled to a system
memory 820 via an input/output (I/O) interface 830. Com-
puter system 800 further includes a network interface 840
coupled to 1/O interface 830, and one or more input/output
devices 850, such as cursor control device 860, keyboard 870,
and display(s) 880. In some cases, it is contemplated that
embodiments may be implemented using a single instance of
computer system 800, while in other embodiments multiple
such systems, or multiple nodes making up computer system
800, may be configured to host different portions or instances
of'embodiments. For example, in one embodiment some ele-
ments may be implemented via one or more nodes of com-
puter system 800 that are distinct from those nodes imple-
menting other elements.

In various embodiments, computer system 800 may be a
uniprocessor system including one processor 810, or a mul-
tiprocessor system including several processors 810 (e.g.,
two, four, eight, or another suitable number). Processors 810
may be any suitable processor capable of executing instruc-
tions. For example, in various embodiments processors 810
may be general-purpose or embedded processors implement-
ing any of a variety of instruction set architectures (ISAs),
such as the x86, PowerPC, SPARC, or MIPS ISAs, or any
other suitable ISA. In multiprocessor systems, each of pro-
cessors 810 may commonly, but not necessarily, implement
the same ISA.

System memory 820 may be configured to store program
instructions 822 and/or data 832 accessible by processor 810.
In various embodiments, system memory 820 may be imple-
mented using any suitable memory technology, such as static
random access memory (SRAM), synchronous dynamic
RAM (SDRAM), nonvolatile/Flash-type memory, or any
other type of memory. In the illustrated embodiment, pro-
gram instructions 822 may be configured to implement any
functionality of the clients or merchant systems described
above including but not limited to service instances (e.g.,
service instance 110a or payment service instance 716a) and
commit latency monitors (e.g., commit latency monitor

20

30

40

45

55

12

112a). Additionally, data 832 of memory 820 may store any
of the information or data structures described above, includ-
ing but not limited to work queues (e.g., work queue 1144). In
some embodiments, program instructions and/or data may be
received, sent or stored upon different types of computer-
accessible media or on similar media separate from system
memory 820 or computer system 800. While computer sys-
tem 800 is described as implementing the functionality of
hosts, any of the items described above (e.g., clients, e-com-
merce portals, payment processor systems, service interfaces,
load balancers, database systems, database partitions, etc.)
may be implemented via such a computer system.

Inone embodiment, I/O interface 830 may be configured to
coordinate I/O traffic between processor 810, system memory
820, and any peripheral devices in the device, including net-
work interface 840 or other peripheral interfaces, such as
input/output devices 850. In some embodiments, /O inter-
face 830 may perform any necessary protocol, timing or other
data transformations to convert data signals from one com-
ponent (e.g., system memory 820) into a format suitable for
use by another component (e.g., processor 810). In some
embodiments, /O interface 830 may include support for
devices attached through various types of peripheral buses,
such as a variant of the Peripheral Component Interconnect
(PCI) bus standard or the Universal Serial Bus (USB) stan-
dard, for example. In some embodiments, the function of I/O
interface 830 may be split into two or more separate compo-
nents, such as a north bridge and a south bridge, for example.
Also, in some embodiments some or all of the functionality of
1/O interface 830, such as an interface to system memory 820,
may be incorporated directly into processor 810.

Network interface 840 may be configured to allow data to
be exchanged between computer system 800 and other
devices attached to a network 885 (e.g., any element of FIG.
1-7) or between nodes of computer system 800. Network 885
may in various embodiments include one or more networks
including but not limited to Local Area Networks (LANs)
(e.g., an Ethernet or corporate network), Wide Area Networks
(WANs) (e.g., the Internet), wireless data networks, some
other electronic data network, or some combination thereof.
In some embodiments, network(s) 102 of FIG. 1 and network
706 and 710 of FIG. 7 may include one or more networks
configured in a manner similar to that of network 885. In
various embodiments, network interface 840 may support
communication via wired or wireless general data networks,
such as any suitable type of Ethernet network, for example;
via telecommunications/telephony networks such as analog
voice networks or digital fiber communications networks; via
storage area networks such as Fibre Channel SANs, or via any
other suitable type of network and/or protocol.

Input/output devices 850 may, in some embodiments,
include one or more display terminals, keyboards, keypads,
touchpads, scanning devices, voice or optical recognition
devices, or any other devices suitable for entering or access-
ing data by one or more computer systems 800. Multiple
input/output devices 850 may be present in computer system
800 or may be distributed on various nodes of computer
system 800. In some embodiments, similar input/output
devices may be separate from computer system 800 and may
interact with one or more nodes of computer system 800
through a wired or wireless connection, such as over network
interface 840.

As shown in FIG. 8, memory 820 may include program
instructions 822 configured to implement any element or
action described above. In one embodiment, the program
instructions may implement the methods described above,
such as the methods illustrated by FIGS. 4 and 6. In other

US 9,146,952 B1

13

embodiments, different elements and data may be included.
Note that data 832 may include any data or information
described above, including but not limited to the information
of host systems 116a-» or database partitions 118a-».

Those skilled in the art will appreciate that computer sys-
tem 800 is merely illustrative and is not intended to limit the
scope of embodiments. In particular, the computer system
and devices may include any combination of hardware or
software that can perform the indicated functions, including
computers, network devices, Internet appliances, PDAs,
wireless phones, pagers, etc. Computer system 800 may also
be connected to other devices that are not illustrated, or
instead may operate as a stand-alone system. In addition, the
functionality provided by the illustrated components may in
some embodiments be combined in fewer components or
distributed in additional components. Similarly, in some
embodiments, the functionality of some of the illustrated
components may not be provided and/or other additional
functionality may be available.

Those skilled in the art will also appreciate that, while
various items are illustrated as being stored in memory or on
storage while being used, these items or portions of them may
be transferred between memory and other storage devices for
purposes of memory management and data integrity. Alter-
natively, in other embodiments some or all of the software
components may execute in memory on another device and
communicate with the illustrated computer system via inter-
computer communication. Some or all of the system compo-
nents or data structures may also be stored (e.g., as instruc-
tions or structured data) on a computer-accessible medium or
a portable article to be read by an appropriate drive, various
examples of which are described above. In some embodi-
ments, instructions stored on a computer-accessible medium
separate from computer system 800 may be transmitted to
computer system 800 via transmission media or signals such
as electrical, electromagnetic, or digital signals, conveyed via
a communication medium such as a network and/or a wireless
link. Various embodiments may further include receiving,
sending or storing instructions and/or data implemented in
accordance with the foregoing description upon a computer-
accessible medium. Generally speaking, a computer-acces-
sible medium may include a computer-readable storage
medium or memory medium such as magnetic or optical
media, e.g., disk or DVD/CD-ROM, volatile or non-volatile
media such as RAM (e.g. SDRAM, DDR, RDRAM, SRAM,
etc.), ROM, etc. In some embodiments, a computer-acces-
sible medium may include transmission media or signals such
as electrical, electromagnetic, or digital signals, conveyed via
a communication medium such as network and/or a wireless
link.

The methods described herein may be implemented in
software, hardware, or a combination thereof, in different
embodiments. In addition, the order of the blocks of the
methods may be changed, and various elements may be
added, reordered, combined, omitted, modified, etc. Various
modifications and changes may be made as would be obvious
to a person skilled in the art having the benefit of this disclo-
sure. The various embodiments described herein are meant to
be illustrative and not limiting. Many variations, modifica-
tions, additions, and improvements are possible. Accord-
ingly, plural instances may be provided for components
described herein as a single instance. Boundaries between
various components, operations and data stores are somewhat
arbitrary, and particular operations are illustrated in the con-
text of specific illustrative configurations. Other allocations
of functionality are envisioned and may fall within the scope
of claims that follow. Finally, structures and functionality

10

15

20

25

30

35

40

45

50

55

60

65

14

presented as discrete components in the exemplary configu-
rations may be implemented as a combined structure or com-
ponent. These and other variations, modifications, additions,
and improvements may fall within the scope of embodiments
as defined in the claims that follow.

The invention claimed is:

1. A system, comprising:

a database system comprising multiple database partitions
configured to store data associated with one or more
work items associated with processing requests made
through a service interface;

a plurality of host computers configured to perform work
items requested through the service interface, wherein
performing at least some of said work items includes
initiating one or more commit operations on one or more
of said database partitions, wherein at least some of the
commit operations comprise updating a state of a trans-
action processed by the service;

wherein one or more of the host computers are configured
to generate, on a per-host, per-database partition basis,
commit latency values for the database partitions,
wherein a commit latency value for a particular database
partition is dependent on the latency of one or more
previous commit operations directed to that particular
database partition;

wherein a given one of the host computers is configured to:
determine, for a particular work item to be initiated on a

respective one of the database partitions, that the

given host computer’s commit latency value for the

respective database partition exceeds a commit

latency threshold; and

in response to said determine, reduce a load of work

items on the respective database partition, wherein to

reduce the load of work items, the given one of the

host computers is configured to:

postpone the particular work item on the respective
database partition; and

perform the particular work item after the postpone-
ment.

2. The system of claim 1, wherein another one of the host
computers is configured to:

determine, for another work item to initiated on the respec-
tive database partition, that the another host computer’s
commit latency value for the respective database parti-
tion does not exceed the commit latency threshold; and

perform the another work item without postponement.

3. The system of claim 1, wherein in further response to
determining that the commit latency value for the respective
database partition exceeds the commit latency threshold, the
given host computers is further configured to:

postpone the particular work item until the respective com-
mit latency value for the particular database partition
does not exceed the commit latency threshold.

4. The system of claim 1, wherein in further response to
determining that the commit latency value for the respective
database partition exceeds the commit latency threshold, the
given host computer is further configured to:

determine a new commit latency value for the particular
database partition;

compare the new commit latency value with the commit
latency threshold; and

if the new commit latency value is above the commit
latency threshold, repeat said postponement of the par-
ticular work item prior to said performing the particular
work item.

US 9,146,952 B1

15

5. The system of claim 1, wherein to perform at least some
work items, the one or more host computers are each config-
ured to:

communicate with a payment processor system to reserve

or settle funds for a purchase transaction; and

receive, from the payment processor system, an indication

that a quantity of funds have been reserved or settled for
the purchase transaction, wherein the state of the pur-
chase transaction is updated within at least one of the
multiple database partitions to indicate that the quantity
of funds have been reserved or settled.

6. The system of claim 5, wherein in response to determin-
ing that the commit latency value for the respective database
partition exceeds the commit latency threshold, the one or
more host computers are configured to:

postpone said communicating with the payment processor

system until the commit latency value for the respective
database partition does not exceed the commit latency
threshold.

7. The system of claim 1, wherein the work items are
requested by clients via the service interface, wherein each
work item is associated with a requesting one of the clients,
and wherein in response determining that the particular work
item is to be postponed, the given host computer is further
configured to:

send to the requesting client a message that indicates one or

more of: the request was not processed, or the request
should be resubmitted at a later time.

8. The system of claim 1, wherein the one or more host
computers each comprise a commit latency monitor config-
ured to:

for each work item performed by a respective host com-

puter:

measure a latency value for respective work item; and

generate the commit latency value for the database par-
tition to which the respective work item is directed
using the measured latency value for the respective
work item.

9. The system of claim 8, wherein a respective commit
latency monitor is configured to generate a commit latency
value for the given database partition as being the result of a
statistical analysis of multiple measures of latency of previ-
ous commit operations directed to that given database parti-
tion.

10. The system of claim 9, wherein the statistical analysis
comprises determining the average latency of a sample com-
prising the multiple measures of latency of the previous com-
mit operations.

11. The system of claim 9, wherein the statistical analysis
comprises determining the median latency of a sample com-
prising the multiple measures of latency of the previous com-
mit operations.

12. A non-transitory computer-readable storage medium,
storing program instructions computer-executable on a com-
puter to:

perform work items requested by clients through a service

interface, wherein performing at least some of the work
items includes initiating one or more commit operations
on one or more database partitions;

generate, on a per-host, per-database partition basis, com-

mit latency values for the database partitions, wherein a
commit latency value for a particular database partition
is dependent on the latency of one or more previous
commit operations directed to that particular database
partition;

10

15

20

25

30

35

40

45

50

55

60

65

16

categorize the work items into a plurality of work catego-
ries, wherein each respective work category has an asso-
ciated priority level;

in response to determining that the priority level associated

with the work category for a given work item is above a
highest priority threshold, perform the given work item
without a postponement;

in response to determining that the priority level associated

with the work category for the given work item is not
above a highest priority threshold and that a current
commit latency value for a particular database partition
to which the given work item is directed exceeds a com-
mit latency threshold for the priority level associated
with the work category for the given work item:
reduce a load of work items sent to the database system,
wherein to reduce the load of work items comprises:
postpone the given work item on the database system;
and
perform the given work item after the postponement.
13. The non-transitory computer-readable storage medium
of claim 12, wherein the program instructions are further
computer-executable to:
determine that the current commit latency value for the
particular database partition does not exceed a commit
latency threshold for a different priority level for a work
category associated with another work item; and

perform the another work item without postponement prior
to said performing the given work item after the post-
ponement.

14. The non-transitory computer-readable storage medium
of claim 12, wherein the highest priority threshold does not
have a commit latency threshold.

15. The non-transitory computer-readable storage medium
of claim 12, wherein the program instructions are further
computer-executable to query a commit latency monitor to
obtain the current commit latency value.

16. The non-transitory computer-readable storage medium
of claim 12, wherein the program instructions are further
computer-executable to evaluate and postpone the given work
item at least one additional time prior to said performing the
given work item.

17. A method, comprising:

performing, by one or more computers:

performing work items requested through a service
interface, wherein performing at least some of the
work items includes initiating one or more commit
operations on one or more database partitions;

generating, on a per-host, per-database partition basis,
commit latency values for the database partitions,
wherein a commit latency value for a particular data-
base partition is dependent on the latency of one or
more previous commit operations directed to that par-
ticular database partition; and

reducing a load of commit operations for the particular
database partition based at least partly on the commit
latency value for the particular database partition
exceeding a commit latency threshold, wherein said
reducing the load of commit operations comprises
postponing work items for the particular database
partition.

18. The method of claim 17, further comprising:

categorizing the work items into work categories, wherein

each respective work category has an associated priority
level,

in response to determining that the associated priority level

for a work category of a given work item is above a
highest priority threshold:

US 9,146,952 B1

17

performing the given work item without postponement;
in response to determining that the associated priority level
for the work category ofthe given work item is not above
the highest priority threshold and that a current commit
latency value for the particular database partition to
which the given work item is directed exceeds a commit
latency threshold for the associated priority level:
postponing the given work item to reduce load on the
database system; and
performing the given work item after the postponement.

19. The method of claim 18, further comprising:

determining that the current commit latency value for the

particular database partition does not exceed a commit
latency threshold for a work category associated with
another work item; and

performing the another work item without postponement

and prior to said performing the given work item.

20. The method of claim 17, wherein the current commit
latency value for the particular database partition are gener-
ated as being the result of a statistical analysis of multiple
latencies of previous commit operations directed to that par-
ticular database partition.

#* #* #* #* #*

10

15

20

18

